PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

III B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023
DESIGN AND ANALYSIS OF ALGORITHMS
(Common to IT,AIDS,AIML Branches)
Time: 3 hours
Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A

Answer all the questions in Part-A (5X2=10M).

Q.No.		Questions	Marks	CO
KL				
	a)	Compute the average case time complexity of quick sort	$[2 \mathrm{M}]$	1
	b)	Differentiate variable length encoding and fixed length encoding	$[2 \mathrm{M}]$	2
	c)	What is Knapsack problem?	2	
	d)	Define Sum of Subsets problem	$[2 \mathrm{M}]$	3
	e)	What is the Knuth-Morris-Pratt algorithm?	1	

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2	a)	Discuss various the asymptotic notations used for best case, average case and worst case analysis of algorithms	[5M]	1	1
	b)	Explain in detail quick sorting method with example.	[5M]	1	2
OR					
3		Illustrate merge sort algorithm and discuss time complexity	[10M]	1	2
UNIT-II					
4		Explain kruskals algorithm with suitable example.	[10M]	2	2
OR					
5		Explain the general principle of Greedy method and also list the applications of Greedy method.	[10M]	2	2
UNIT-III					
6	a)	List out the features of dynamic programming.	[3M]	3	1
	b)	Describe the travelling salesman problem and discuss how to solve it using dynamic programming	[7M]	3	2
OR					
7		Explain the Single source shortest path problem with an example.	[10M]	3	2
UNIT-IV					
8	a)	Write an algorithm for Hamiltonian cycle with an example.	[5M]	4	2
	b)	Explain 15-Puzzle problem with example using branch and bound?	[5M]	4	2
OR					

9.	Explain the Graph - coloring problem. And draw the state space tree for $\mathrm{m}=3$ colors n=4 vertices graph?	$[10 \mathrm{M}]$	4	2	
UNIT-V					
10.	List out the applications of pattern matching algorithm. Discuss pattern matching algorithms with suitable example. Mention its types.	$[10 \mathrm{M}]$	5	2	
OR					
11.		Explain Knuth-Morris-Pratt algorithm with suitable example.	$[10 \mathrm{M}]$	5	2

