PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) III B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL – 2023 DESIGN AND ANALYSIS OF ALGORITHMS (Common to IT,AIDS,AIML Branches)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u>

Answer all the questions in Part-A (5X2=10M)_

Q.No.		Questions	Marks	СО	KL
1.	a)	Compute the average case time complexity of quick sort	[2M]	1	2
	b)	Differentiate variable length encoding and fixed length encoding	[2M]	2	2
	c)	What is Knapsack problem?	[2M]	3	1
	d)	Define Sum of Subsets problem	[2M]	4	1
	e)	What is the Knuth-Morris-Pratt algorithm?	[2M]	5	1

<u>PART-B</u> Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL			
UNIT-I								
2.	a)	Discuss various the asymptotic notations used for best case, average case	[5M]	1	1			
		and worst case analysis of algorithms						
	b)	Explain in detail quick sorting method with example.	[5M]	1	2			
OR								
3.		Illustrate merge sort algorithm and discuss time complexity	[10M]	1	2			
UNIT-II								
4.		Explain kruskals algorithm with suitable example.	[10M]	2	2			
OR								
5.		Explain the general principle of Greedy method and also list the applications	[10M]	2	2			
		of Greedy method.						
UNIT-III								
6.	a)	List out the features of dynamic programming.	[3M]	3	1			
	b)	Describe the travelling salesman problem and discuss how to solve it using	[7M]	3	2			
		dynamic programming						
		OR						
7		Explain the Single source shortest path problem with an example.	[10M]	3	2			
UNIT-IV								
8.	a)	Write an algorithm for Hamiltonian cycle with an example.	[5M]	4	2			
	b)	Explain 15-Puzzle problem with example using branch and bound?	[5M]	4	2			
OR								

Code No: P18ITT04

		L		l			
9.	Explain the Graph – coloring problem. And draw the state space tree for m=3 colors n=4 vertices graph?	[10M]	4	2			
UNIT-V							
10.	List out the applications of pattern matching algorithm. Discuss pattern matching algorithms with suitable example. Mention its types.	[10M]	5	2			
OR							
11.	Explain Knuth-Morris-Pratt algorithm with suitable example.	[10M]	5	2			
